On entire Dirichlet series similar to Hadamard compositions
نویسندگان
چکیده
A function $F(s)=\sum_{n=1}^{\infty}a_n\exp\{s\lambda_n\}$ with $0\le\lambda_n\uparrow+\infty$ is called the Hadamard composition of genus $m\ge 1$ functions $F_j(s)=\sum_{n=1}^{\infty}a_{n,j}\exp\{s\lambda_n\}$ if $a_n=P(a_{n,1},...,a_{n,p})$, where$P(x_1,...,x_p)=\sum\limits_{k_1+\dots+k_p=m}c_{k_1...k_p}x_1^{k_1}\cdot...\cdot x_p^{k_p}$ a homogeneous polynomial degree 1$. Let $M(\sigma,F)=\sup\{|F(\sigma+it)|:\,t\in{\Bbb R}\}$ and $\alpha,\,\beta$ be positive continuous increasing to $+\infty$ on $[x_0, +\infty)$. To characterize growth $M(\sigma,F)$, we use generalized order $\varrho_{\alpha,\beta}[F]=\varlimsup\limits_{\sigma\to+\infty}\dfrac{\alpha(\ln\,M(\sigma,F))}{\beta(\sigma)}$, type$T_{\alpha,\beta}[F]=\varlimsup\limits_{\sigma\to+\infty}\dfrac{\ln\,M(\sigma,F)}{\alpha^{-1}(\varrho_{\alpha,\beta}[F]\beta(\sigma))}$and membership in convergence class defined by condition$\displaystyle \int_{\sigma_0}^{\infty}\frac{\ln\,M(\sigma,F)}{\sigma\alpha^{-1}(\varrho_{\alpha,\beta}[F]\beta(\sigma))}d\sigma<+\infty.$Assuming $\alpha, \beta$ $\alpha^{-1}(c\beta(\ln\,x))$ are slowly for each $c\in (0,+\infty)$ $\ln\,n=O(\lambda_n)$ as $n\to \infty$, it proved, example, that $F_j$ have same $\varrho_{\alpha,\beta}[F_j]=\varrho\in types $T_{\alpha,\beta}[F_j]=T_j\in [0,+\infty)$, $c_{m0...0}=c\not=0$, $|a_{n,1}|>0$ $|a_{n,j}|= o(|a_{n,1}|)$ $n\to\infty$ $2\le j\le p$, $F$ genus$m\ge then $\varrho_{\alpha,\beta}[F]=\varrho$ $\displaystyle T_{\alpha,\beta}[F]\le \sum_{k_1+\dots+k_p=m}(k_1T_1+...+k_pT_p).$It proved also belongs only ifall belong class.
منابع مشابه
On Entire Functions Defined by a Dirichlet Series: Correction
1. As pointed out by Sunyer i Balaguer in the preceding paper the proofs of Theorem 1 and of the second part of Theorem 2 of our paper [l ] are faulty. We observe that if we impose the additional hypothesis that Afs(D), is a nonincreasing function for sufficiently small a then the proofs can be made to work. After correction Theorem 1 and the second part of Theore...
متن کاملOn the lower order (R) of an entire Dirichlet series
© Annales de l’institut Fourier, 1974, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...
متن کاملRelative order and type of entire functions represented by Banach valued Dirichlet series in two variables
In this paper, we introduce the idea of relative order and type of entire functions represented by Banach valued Dirichlet series of two complex variables to generalize some earlier results. Proving some preliminary theorems on the relative order, we obtain sum and product theorems and we show that the relative order of an entire function represented by Dirichlet series is the same as that of i...
متن کاملOn Some Results in the Light of Generalized Relative Ritt Order of Entire Functions Represented by Vector Valued Dirichlet Series
In this paper, we study some growth properties of entire functions represented by a vector valued Dirichlet series on the basis of generalized relative Ritt order and generalized relative Ritt lower order.
متن کاملValues of Entire Functions Represented by Gap Dirichlet Series
Introduction. In two previous notes [9],1 I stated some results which, in a general way, may be expressed as follows: If the Taylor series which represents an entire function satisfies a certain gap condition (which depends only on the order of F(z)), the zeros of F(z) —f(z) are not exceptional with respect to the proximate order of F(z) by any meromorphic function f(z) ^ w of lower order. On t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Matemati?nì studìï
سال: 2023
ISSN: ['2411-0620', '1027-4634']
DOI: https://doi.org/10.30970/ms.59.2.132-140